Arc-analytic roots of analytic functions are Lipschitz

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Analytic Roots of Invertible Matrix Functions∗

Various conditions are developed that guarantee existence of analytic roots of a given analytic matrix function with invertible values defined on a simply connected domain.

متن کامل

Analytic roots of invertible matrix functions

Various conditions are developed that guarantee existence of analytic roots of a given analytic matrix function with invertible values defined on a simply connected domain.

متن کامل

Invariants of Bi-lipschitz Equivalence of Real Analytic Functions

We construct an invariant of the bi-Lipschitz equivalence of analytic function germs (Rn,0) → (R,0) that varies continuously in many analytic families. This shows that the bi-Lipschitz equivalence of analytic function germs admit continuous moduli. For a germ f the invariant is given in terms of the leading coefficients of the asymptotic expansions of f along the sets where the size of |x||grad...

متن کامل

Compact composition operators on certain analytic Lipschitz spaces

We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.

متن کامل

Analytic functions are I - density continuous

A real function is I-density continuous if it is continuous with the I-density topology on both the domain and the range. If f is analytic, then f is I-density continuous. There exists a function which is both C and convex which is not I-density continuous.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2004

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-04-07323-x